1 |
新潟県立高校 (R5年) ★ |
5 |
埼玉県立高校 (R5年) ★★ |
図のように,AC//BCの台形ABCDがあり,∠BCD=∠BDCである。対角線BD上に,∠DBA=∠BCEとなる点Eをとるとき,AB=ECであることを証明しなさい。
|
下の図のように,平行四辺形ABCDの辺AB,BC,CD,DA上に4点E,F,G,Hをそれぞれとり,線分EGとBH,DFとの交点をそれぞれI,Jとします。
AE=BF=CG=DHのとき,△BEI≡△DGJであることを証明しなさい。
|
2 |
大阪教育大平野校舎高校 (R6年) ★★ |
6 |
高知県立高校 (R6年) ★ |
右の図において,四角形ABDD,BEFG,DHFI はすべて正方形である。それぞれの正方形は,図のように2点を他の正方形と共有している。3点A,H,Iが同一直線上にあるとき,
(1) AD=AFを証明しなさい。
(2) 3点A,G,Eが同一線上にあることを示しなさい。
|
右の図のように,直線l 上に3点A,B,Cをとり,辺ACを一辺とする正三角形ACDと,辺DBを一辺とする正三角形BEDをつくり,点Cと点Eを結ぶ。
(1) △ABD≡△CEDを証明しなさい。
(2) AD=4cmのとき,四角形BCEDの面積を求めなさい。
|
3 |
広島県立高校 (R6年) ★ |
7 |
東京電機大高校 (R7年) ★★ |
右の図のように,△ABCは鋭角三角形で,頂点A,B,Cは円Oの円周上にあります。点Aから辺BCに垂線ADを引きます。また,点Bから辺ACに垂線を引き,線分ADとの文点をE,辺ACとの交点をF,円0との交点をGとします。さらに,点Aと点Gを結ぴます。このとき,△AEF≡△AGFであることを証明しなさい。
|
図において,△ABCと△ADEは正三角形で,∠ADB=75°,AE=2 cmです。
(1) ∠CAEの大きさを求めなさい。
(2) ∠AECの大きさを求めなさい。
(3) 辺ABの長さを求めなさい。
(4) 四角形ABCEの面積を求めなさい。
|
4 |
西大和学園高校 (R6年) ★★ |
図のように,ABを直径とする円周上に2点C,Dがあり,円周上に点EをBCとDEが垂直になるようにとる。BCとDEの交点を Fとする。このとき,三角形CAEと三角形ACDが合同であることを証明せよ。
|