1 次の問いに答えなさい。

(1)
$$\frac{2x-3y}{4} + \frac{x+4y}{6}$$
 を計算しなさい。

(2)
$$(1+\sqrt{6})^2 - \frac{\sqrt{8}+10\sqrt{3}}{\sqrt{2}}$$
 を計算しなさい。

(3) 二次方程式
$$(x-7)^2-4(x-7)=0$$
 を解きなさい。

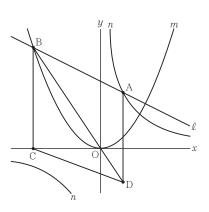
(4) a、b を定数とする。関数 $y=-\frac{1}{4}x^2$ について、x の変域が $-6 \le x \le a$ のときの y の変域が $-16 \le y \le b$ であるとき、a、b の値をそれぞれ求めなさい。

(5) x を有理数とする。 $\frac{35}{12}x$ と $\frac{21}{20}x$ の値がともに自然数となる最も小さい x の値を求めなさい。

- (6) 二つの箱 A、B がある。箱 A には奇数の書いてある 3 枚のカード 1、3、5 が入っており、箱 B には偶数の書いてある 3 枚のカード 4、6、8 が入っている。A、B それぞれの箱から同時にカードを 1 枚ずつ取り出し、箱 A の中に残っている 2 枚のカードに書いてある数の和を a、箱 B の中に残っている 2 枚のカードに書いてある数の和を b、箱 A から取り出したカードに書いてある数と箱 B から取り出したカードに書いてある数との和を aとする。このとき、a0 である確率はいくらですか。A、B それぞれの箱において、どのカードが取り出されることも同様に確からしいものとして答えなさい。
- (7) a を十の位の数が 0 でない 3 けたの自然数とし、b を a の百の位の数と十の位の数とを入れかえて できる 3 けたの自然数とする。ただし、b の一の位の数は a の一の位の数と同じとする。次の二つの 条件を同時に満たす a の値を**すべて**求めなさい。
- $\cdot \sqrt{\frac{a-b}{2}}$ の値は自然数である。
- ・aの百の位の数と十の位の数と一の位の数との和は20である。

- x 座標は-3 である。 ℓ は、2 点 A 、B を通る 直線である。C は、B を通り y 軸に平行な直線と x 軸との交点である。D は、A を通り y 軸に平行な直線と直線 BO との交点である。C と D とを結ぶ。 ℓ の傾きは $-\frac{1}{2}$ であり、四角形 ABCD の面積は 17 cm² である。a 、b の値をそれぞれ求め

(8) a、bを正の定数とする。右の図において、mは

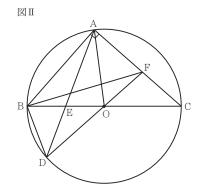

関数 $y = ax^2$ のグラフを表し、n は関数 $y = \frac{b}{r}$

のグラフを表す。A はn上の点であり、そのx 座標は1である。B はm上の点であり、その

なさい。答えを求める過程がわかるように、途中 の式を含めた求め方も説明すること。ただし、 原点〇から点(1,0)までの距離、原点〇から

点(0.1)までの距離はそれぞれ1 cmである

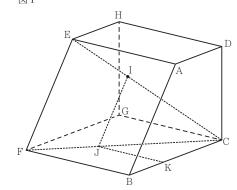
とする。

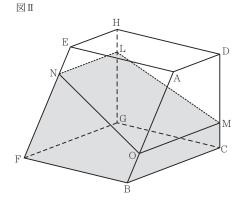

2 図 I、図 II において、 \triangle ABC は \angle BAC = 90°の直角三角形であり、BC = 4 cm、AB < AC である。 \triangle O は、3 \triangle A、B、C を通る円の中心である。このとき、O は辺 BC の中点である。 \triangle OAD は OA = OD の二等辺三角形であり、D は円 O の周上にあって直線 BC について A と反対側にある。半周より短い弧 \widehat{AB} 、 \widehat{BD} について、 \widehat{AB} = $2\widehat{BD}$ である。E は、辺 AD と線分 BO との交点である。B と D とを結ぶ。 円周率を π として、次の問いに答えなさい。

図I

- (1) 図 I において、
- ① 中心角の大きさが 180 °より小さいおうぎ形 ODC について、中心角 \angle DOC の大きさを a ° \angle する \angle き、おうぎ形 ODC の面積を a を用いて表しなさい。

B E O C


- ② $\triangle BDO \supset \triangle AEC$ であることを証明しなさい。
- (2) 図Ⅱにおいて、BE = 1 cm である。F は、直線 DO と辺 AC との交点である。B と F とを結ぶ。
- ① 辺ABの長さを求めなさい。
- ② 線分 BF の長さを求めなさい。


3 図 I、図II において、立体 ABCD - EFGH は四角柱である。四角形 ABCD は AD $/\!\!$ BC の台形であり、 \angle ADC = \angle DCB = 90 $^{\circ}$ である。AD = 2 cm、DC = BC = 4 cm である。四角形 EFGH \equiv 四角形 ABCD である。四角形 HGCD、GFBC は 1 辺の長さが 4 cm の正方形であり、四角形 HEAD、EFBA は長方形である。

次の問いに答えなさい。

(1) 図Iにおいて、EとC、FとCとをそれぞれ 図I 結ぶ。Iは、線分EC上の点である。Jは、Iを 通り辺EFに平行な直線と線分FCとの交点 である。Kは、Jを通り辺FBに平行な直線と 辺BCとの交点である。

- ① \triangle BCF を直線 FC を軸として1回転 させてできる立体の体積は何 cm 3 ですか。 円周率を π として答えなさい。
- ② 線分 EC の長さを求めなさい。
- ③ EI = JK であるときの線分 EI の長さを求めなさい。
- (2) 図Ⅱにおいて、L、M はそれぞれ辺 HG、 図Ⅱ DC上の点であり、HL = MC = 1 cm である。 Lと M とを結ぶ。N は、L を通り辺 FG に平行 な直線と辺 EF との交点である。O は、M を 通り辺 BC に平行な直線と辺 AB との交点である。このとき、NL // OM である。N と O とを結ぶ。

- ① 線分 OM の長さを求めなさい。
- ② 立体 OBCM NFGL の体積を求めなさい。

0	受験 番号	番		得点		
---	----------	---	--	----	--	--

 \circ

令和6年度大阪府学力検査問題

数 学 解 答 用 紙〔C問題〕

						採	点者記入欄	
1	(1)					4		
	(2)					4		
	(3)					/ 5		Ī
	(4)	<i>a</i> の値		b の値				
	(5)		1			6		
	(6)					6		
	(7)					6		
	(8)	(求め方)						
		<u>a</u>	の値	、bの値	-	/8		
						44		

				採	点者記入欄	
2	(1)	1	$ m cm^2$	$\sqrt{4}$		
_		2	(証明)			
				/8		
	(2)	1	cm	$\sqrt{4}$		
		2	cm	6		
				/22		
					点者記入欄	_ _

 ${\rm cm}^3$

cm

cm

cm

 ${\rm cm}^3$

(1) ①

(2) 1

2

〇 受験 番号 番

 \circ

得点 --

配点 注意事項

令和6年度大阪府学力検査問題

数 学 採 点 資 料 [C問題]

1	(1)	$\frac{8x-y}{12}$	4	
'	(2)	$5 - 3\sqrt{6}$	4	
	(3)	x = 7 , $x = 11$		
	(4)	a の値 8 b の値 0		
	(5)	<u>60</u> 7	6	
	(6)	<u>5</u> 9	6	
	(7)	839 , 947	6	
	(8)	(求め方) A は n 上の点だから A (1, b) B は m 上の点だから B (-3 , $9a$) ℓ の傾きは $-\frac{1}{2}$ だから $\frac{b-9a}{4} = -\frac{1}{2}$ ⑦ BC = $9a$ (cm) 直線 BO の式は $y = -3ax$ であり、D は直線 BO 上の点だから D (1, $-3a$) よって $AD = 3a + b$ (cm) 四角形 $ABCD$ の面積は 17 cm² だから $\frac{1}{2} \times (12a + b) \times 4 = 17$ ⑦ ⑦、①を連立させて解くと $a = \frac{1}{2}$ 、 $b = \frac{5}{2}$ (*)		・部分点を与える。 ・(*)において、「この a、bの値は問題に適している。」という記述を省略している。この記述がなくても減点の対象とはしない。
		a の値 $\frac{1}{2}$ 、 b の値 $\frac{5}{2}$	8	
			44	

				配点	注 意 事 項
2	(1)	1	$\frac{1}{90}\pi a$ cm ²	4	
-		(2)	(証 明)		部分点を与える。
			△BDO と△AEC において		
			同じ弧に対する円周角は等しいから		
			$\angle DBO = \angle EAC \cdots \bigcirc \bigcirc$		
			$\widehat{AB} = 2\widehat{BD}$ だから $\angle AOB = 2\angle BOD$		
			よって $\angle BOD = \frac{1}{2} \angle AOB \cdots$ ④		
			一つの弧に対する円周角の大きさは、その弧に対する		
			中心角の大きさの半分だから		
			$\angle ACE = \frac{1}{2} \angle AOB \cdots $		
			②、 ⑤より ∠BOD = ∠ACE ·····		
			⑦、		
			△BDO ∽ △AEC		
				/8	
	(2)	1	$\sqrt{7}$ cm	4	
		2	$\frac{2\sqrt{22}}{3}$ cm	6	
				/22	

				配点	注	意	事	項
3	(1)	1	$\frac{32\sqrt{2}}{3}\pi$ cm ³	$\sqrt{4}$				
		2	6 cm	$\sqrt{4}$				
		3	$\frac{12}{5}$ cm	6				
	(2)	1	$\frac{7}{2}$ cm	4				
		2	$\frac{83}{3}$ cm ³	6				
				/ 24				