1 次の計算をしなさい.

(25点)

$$(1)\quad \left\{\left(-\frac{1}{2}\right)^2-\frac{5}{6}\right\}\div\left(-\frac{5}{24}\right)$$

(2)
$$\frac{2(x-1)}{3} - x + 4$$

(3)
$$(4x^2y)^3 \div (-2x)^2 \times \frac{1}{(-2x^2)}$$

(4)
$$(7+4\sqrt{3})^{2021}(7-4\sqrt{3})^{2022}$$

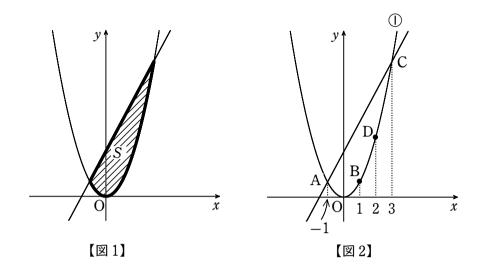
(5)
$$(x+y)^2 - (x+y)(x+y-3)$$

2 次の各問いに答えなさい.

(20点)

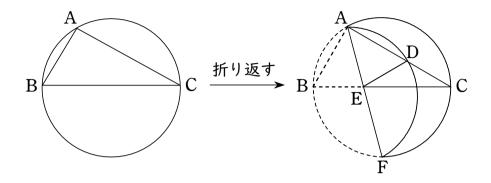
- (1) (x-2)(x+a) を展開すると、 x^2+6x+m となる. m の値を求めなさい.
- (2) xについての 1 次方程式 $x \frac{1}{8}a \frac{3x 1}{2} = 1$ の解が x = -1 のとき a の値を求めなさい。
- (3) $2次方程式 (2x+3)^2-3(x+1)(x-1)=1$ を解きなさい.

3 2	欠の各問いに答えなさい. (2	20 点)
(1)	$\sqrt{54n}$ が自然数となるような最小の自然数 n の値を求めなさい.	
(2)		
	人ずつ座ると5人座れなかったので8人ずつ座ろうとすると、1つのベン	
	4 人座り、1 つのベンチが余った。このとき、この学年の人数を求めなさい	· `.
(3)	袋の中にたくさんの白玉が入っている.袋の中の白玉の個数を推定するた	めに.
(0)	その袋の中に黒玉を300個入れて十分に袋の中をかき混ぜたあと、25個の	
	取り出したところ2個が黒玉であった。このとき、白玉の個数を推定しな	さい.
(4)	サッカーの大会において8チームで総当たり戦を行ったときの総試合数を	求め
	なさい. ただし, 総当たり戦とは各チームが他のすべてのチームと試合を	:する
	ことである.	


- 4 以下の中学生の共太くんとその先生との会話文を読み、次の各問いに答えなさい. (20点)
 - 共太:先生,この前の授業のときに,高校で数学の勉強を進めていくと,直線と放物線で囲まれた部分の面積S(【図1】の斜線部分)を求めることができるとおっしゃっていましたが,今の私の知識ではこのSを求めることはできないのでしょうか?
 - 先生:現時点で明確な面積を出すのは難しいですが、ある方法を使えば、"大体の"面積を出すことはできます。一緒に具体的なグラフで考えてみましょう。まずは【図2】のように放物線 $y=x^2\cdots$ ①上の3点 A, B, Cについて、x 座標をそれぞれ -1, 1, 3 とし、 $\triangle ABC$ の面積 T を求めましょう。

- 先生:その通り. では、さらに x座標が 2 である点 D を放物線 ① 上にとり、 $\triangle OAB$ 、 $\triangle ABC$ 、 $\triangle BCD$ の面積の和 U を求めてみてください.
- 先生:いいえ,共太くん.よく見てください.まだ求めていない部分がありませんか?
- 共太: あ!確かにそうですね. でも先生, 残りの部分がなくなるまでこの計算を ずっと繰り返すんですか?
- 先生:さすがにこれ以上はやりませんが、このような操作を繰り返すことで、徐々に面積Sの値に近づけることができます。この手法をアルキメデスによる取りつくし法といいます。実はこの取りつくし法を進めていくと、次のようなSとTとの関係式を得ることができます。

$$S = \frac{4}{3}T$$


共太:ということはこれを使うと面積Sを求めることができますね!

4. 進. 数

(2) $\frac{U}{S}$ の値を求めなさい。

 $oxed{5}$ AB=1 である $\triangle ABC$ が線分 BC を直径とする半径1 の円に内接している。この 図形を線分 AB が線分 AC に重なるように折り返し,下の図のように点 D, E, F を とった。次の各問いに答えなさい。 $(15\, \mathrm{\AA})$

(1) ∠ABC, ∠CAFの大きさを求めなさい.

(2) 線分 CE の長さを求めなさい.

(3) △CEF の面積を求めなさい.

受験番号		氏名		採点	
------	--	----	--	----	--

1	(1)	(2)	
	(3)	(4)	
	(5)		

2	(1)	m =	(2)	a =	
	(3)	x =	(4)	x =	, <i>y</i> =

3	(1)	n=
	(2)	
	(3)	個
	(4)	試合

4		ア	
	(1)	1	
		ウ	
	(2)		

5	(1)	∠ABC =	,	∠CAF =	
	(2)		CE =		
	(3)		△CEF =		

受験番号	氏名	採点	

1	(1)	<u>14</u> 5	(2)	$\frac{-x+10}{3}$
	(3)	$-8x^2y^3$	(4)	$7-4\sqrt{3}$
	(5)	32	x+3	у

2	(1)	m = -16	(2)	a = 0
	(3)	x = -11, -1	(4)	x = 3, y = -2

3	(1)	n=6
	(2)	124 人
	(3)	3450 個
	(4)	28 試合

4		ア	9
	(1)	1	8
		ウ	10
	(2)		15 16

5	(1)	$\angle ABC = 60^{\circ}$, $\angle CAF = 45^{\circ}$
	(2)	$CE = 3 - \sqrt{3}$
	(3)	$\triangle \text{CEF} = \frac{3 - \sqrt{3}}{2}$

1 次の計算をしなさい.

(30点)

(1)
$$6 \div (-2) - \{(-3) + 2 \times (-4 - 1)\}$$

$$(2) \quad \left(\frac{1}{2}\right)^2 + 0.25 - 1^2$$

(3)
$$\frac{2}{3}xy^2 \div \frac{5}{6}x^2 \times \frac{1}{4}x^2y$$

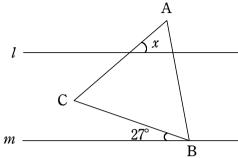
$$(4) \quad \frac{1}{6}(2a-3)+\frac{2}{3}(a+3)$$

(5)
$$\frac{9\sqrt{5}}{\sqrt{3}} - \sqrt{60}$$

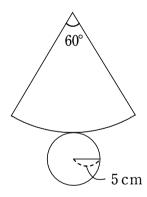
(6)
$$(x-3)^2 - (x+1)(x-1) + 3(2x-4)$$

2 次の各問いに答えなさい.

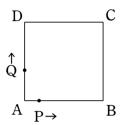
(20点)


- (1) $x^2-14x-72$ を因数分解しなさい.
- (2) 1次方程式 $3-\frac{3x+1}{5}=\frac{1}{3}x$ を解きなさい.
- (3) 2次方程式 (x+3)(x-5)=9 を解きなさい.
- $(4) 連立方程式 \begin{cases} \frac{3}{4}x + \frac{5}{6}y = -4 \\ 0.2x + 0.3y = -2 \end{cases}$ を解きなさい.

3	次の各問いに答えなさい. (2	20 点)
(1)) 男子が22人,女子が28人いるクラスで数学のテストを実施したところ,	男子
	の平均点が 55 点で,クラス全体の平均点が 62 点であった.このとき,女	子の
	平均点を求めなさい.	
(2)	$)$ x についての 2 次方程式 $x^2-ax-22=0$ の解の 1 つが -2 であるとき,	$a \circ$
	値を求めなさい.	
(3)) 大小2つのさいころを同時に投げるとき,出る目の数の和が7以上になる	確率
	を求めなさい.	


4 次の各問いに答えなさい.

(10点)


(1) 下の図で、l/m であるとき、 $\angle x$ の大きさを求めなさい。ただし、 $\triangle ABC$ は正三角形である。

(2) 下の図は、底面の円の半径が $5\,\mathrm{cm}$ 、側面のおうぎ形の中心角が 60° の円すいの展開図である。このとき、おうぎ形の半径を求めなさい。

下の図のように、1 辺が8 cmの正方形 ABCD がある。点 P は、頂点 A を出発し正方形 ABCD の周上を毎秒1 cmの速さで時計の針と反対の回り方で移動する。また、点 Q は、頂点 A を点 P と同時に出発し正方形 ABCD の周上を毎秒2 cmの速さで時計回りに移動する。点 P が頂点 B まで移動すると、2 点 P, Q は停止する。2 点 P, Q が頂点 A を出発してから x 秒後の $\triangle APQ$ の面積を y cm 2 とするとき、次の各問いに答えなさい。ただし、2 点 P, Q が頂点 A の位置にあるときは、y=0 とする。

(1) 出発してから3秒後の yの値を求めなさい。

(2) 点 Q が辺 AD 上を移動しているときの x と y の関係式を求めなさい.

(3) 点 Q が辺 DC 上を移動しているときの x と y の関係式を求めなさい.

(4) y=28 となるときの x の値を求めなさい.

受験番号	氏 名	Y	採	点

1	(1)	(2)	
	(3)	(4)	
	(5)	(6)	

4	(1)	度
	(2)	cm

2	(1)		(2)	x =
	(3)	x =	(4)	x = , $y =$

5	(1)	y =
	(2)	
	(3)	
•	(4)	x =

3	(1)	点
	(2)	a =
	(3)	
	(4)	

受験番号		氏 名		採点
------	--	-----	--	----

1	(1)	10	(2)	$-\frac{1}{2}$
	(3)	$\frac{xy^3}{5}$	(4)	$\frac{2a+3}{2}$
	(5)	$\sqrt{15}$	(6)	-2

(1)	33 度
(2)	30 cm

		(x+4)(x-18)	(2)	x=3
	(3)	x=-4 , 6	(4)	x = 8, y = -12

5	(1)	y=9		
	(2)	$y = x^2$		
	(3)	y=4x		
	(4)	x = 7		

3	(1)	67.5 点
	(2)	a = 9
	(3)	$\frac{7}{12}$
	(4)	504